3、逻辑/存储芯片由多重模块堆叠,模块复杂性构筑薄膜沉积工艺技术高壁垒 芯片工艺分为前道制造和后道封装两个部分,其中前道制造工艺又分为前、中、后三段工艺,前段和后段工艺分别形成晶体管等器件和金属布线,中段工艺用于将二者连接。 1)前段工艺(Front end of line,FEOL):形成芯片底层晶体管等有源MOS器件的过程,主要包括浅槽隔离、源漏极、栅极、侧墙等。在其中,薄膜沉积的主要壁垒在于实现浅槽隔离中薄膜的填充和栅氧化层的厚度减薄等。 ①浅槽隔离(STI):使用薄膜主要为SiO2,薄膜沉积的壁垒在于填充过程中不会在沟道内部残留孔隙。STI目的是在Si衬底上划分出制备晶体管的区域,保证不同晶体管工作过程中不会相互干扰。STI的角度和深度不同对器件特性造成很大影响,同时随着制程进步,要求沟槽深宽比逐渐增大,因此要求刻蚀能够精准控制沟道深度,也需要保证沉积之后被填充的沟道内部不会残留孔隙而影响隔离效果。另外,由于沟槽区域尺寸差异较大,对CMP工艺也有所挑战; ②源漏沟道工艺:使用非晶硅/锗硅填充沟道区,使用TEOS-SiO2和Si3N4等形成侧墙。沟道工艺是IC的核心工艺之一,确定了晶体管的基本性质,主要工艺是在离子注入形成源极/漏极;在1980s,为了改善短沟道效应(沟道缩小引起的载流子速度饱和,器件性能减弱)而引入侧墙,需要在栅极侧面形成并靠近源漏,防止源漏区的离子对栅极造成污染,关键在于对侧墙厚度精确控制,同时要求侧墙保持较好的隔离效果;对于40nm以下的工艺,通过外延法制备α-Si/SiGe可以对沟道区施加应力,可以提高MOSFET的开关速度; ③栅极工艺:集成电路工艺中最关键的步骤,直接影响IC性能,主要用多晶硅/金属作为栅极,用SiO2、SiON、高k介质(HFO2、HfSiOx、HfSiON等)作为栅氧化层,其中薄膜沉积的壁垒在于保证栅氧化层尽可能薄。栅极制作中需要用到最先进的光刻、刻蚀与薄膜沉积工艺及设备,一般在45nm以上制程中,使用氧化方法制备SiO2作为栅氧化层,在栅氧化层上通过CVD方法沉积多晶硅并经过刻蚀形成多晶硅栅;制程进步要求栅氧化层不断减薄来维持栅电容,但在45nm以下制程之后,栅氧化层厚度低于1.5nm,器件漏电流大幅增加,不得不选用介电常数更高的高k介质替代传统SiO2作为栅氧化层,相当于在维持同样栅电容同时增加了等效栅氧化层厚度,同时,由于金属/金属化合物可以降低电阻率等,避免多晶硅栅的耗尽效应,在45nm制程之后逐渐替代多晶硅作为栅极; ④硅化物层:使用WSi2、TiSi2、CoSi2、NiSi等。在源漏沟道区或者多晶硅栅极上沉积一层硅化物层,可以降低接触电阻,最早发展起来的是WSi2,后来在0.25um以上IC中主要使用TiSi2,在0.25um-65/45nm制程中使用CoSi2替代TiSi2,在65/45-14nm和14nm以下制程中分别用NiSi和低温Ti-Si作为硅化物层; 2)中段工艺:包括金属前电介质层(PMD)、阻挡层、接触孔等。中段工艺主要作用是连接前段器件与后段第一层金属,主要壁垒在于对接触孔钨栓塞的刻蚀和沉积。 ①PMD:使用TEOS-SiO2、PSG/BPSG等填充。用CVD方法沉积一层PMD,防止前后段工艺间杂质相互扩散; ②阻挡层和接触孔:使用Ti/TiN等作为阻挡层,使用钨填充接触孔。先刻蚀出接触孔的形状,为了防止刻蚀过程中对接触孔底层材料的损伤,需要在介质层中加入Ti/TiN等作为阻挡层;最后生长钨填充接触孔,钨栓塞的形成是实现前段后段导通的最关键步骤,形成质量较差会导致互连电阻增大,影响器件性能,所以关键是刻蚀的高选择比(保证刻蚀完而不损伤下层材料)和薄膜沉积的上下均匀性,防止由于上层沉积速率比下层快而形成孔洞。 ![]() 3)后段工艺(Back end of line,BEOL):主要壁垒在于保证层间介质、钝化层等薄膜的致密性、均匀性等。后段工艺指形成能将电信号传输到芯片各个器件的互联线,包括金属间介质层沉积、金属线条形成、引出焊盘等工艺,按照功能不同,分类如下: ①金属间介质层(IMD)/阻挡层/钝化层等:一般用SiO2及低k介质制作IMD,使用Ti/TiN/TaN/Ta等作为阻挡层,使用Si3N4等作为阻挡层,要求沉积的薄膜致密性好,隔离能力强。IMD/阻挡层薄膜主要防止不同金属层或者导线与介质层之间杂质的相互扩散,钝化层用来防止最后一层金属在封测过程中受到污染,因此要求薄膜的致密性好,隔离和绝缘能力强,其中阻挡层还要求厚度很薄(8nm)并且与铜和介质材料的粘附性都很好; ②金属籽晶层与金属层:使用W/Al/Cu作为籽晶层,Al/Cu作为金属布线,要求沉积的导线电阻率低、导电能力强。在创建金属互连层过程中,沉积扩散阻挡层是第一步,用于防止层间介质层的金属污染;电镀方法沉积的金属较PVD法具有更低的电阻率和更好的填充特性,因此一般用电镀沉积后段金属层,但是电镀不能在高电阻的阻挡层上面成核,需要先使用PVD方法在阻挡层上沉积的一层W/Cu,用作电镀Cu等金属前的种子层;最后采用电镀方法在籽晶层上面填充Al/Cu等金属核,起到金属互连的作用; ③硬掩膜(Hardmask):使用SiO2、Si3N4、TiN、非晶碳(ACHM)等,主要用于多重曝光工艺等。在制程进步到90nm以下时,光刻尺寸越来越小,需要在晶圆表面形成硬掩膜层配合光刻胶形成掩膜图形,之后通过刻蚀将其去除。传统的硬掩膜层为SiO2、Si3N4等,硬度比较有限,逐渐被金属硬掩膜例如TiN、掺杂碳的非晶硅(ACHM)等替代; ④焊盘(pad):主要使用Al/Cu/合金,要求沉积的薄膜硬度足够高。焊盘位于钝化层的上方,用于将芯片中最后一层金属层和PCB板键合起来。焊盘一般为Al/Cu/合金衬垫(pad),需要承受住检测或者键合带来的机械压力。 ![]() ![]() 在3D NAND中,底层采用氧化物-氮化物重复堆叠形成ON Stack,薄膜壁垒较高,要求厚度和组分均匀,沟道-介质界面缺陷密度低。在20nm工艺节点之后,传统的平面浮栅NAND因受到邻近浮栅-浮栅的耦合电容干扰而达到微缩的极限,为了实现更高的存储容量,NAND工艺开始向三维堆叠方向发展。在3D NAND FEOL工艺中,在完成CMOS的源漏极之后,开始重复沉淀多层氧化硅/氮化硅形成ON叠层(ON Stack),接下来进行光刻和沟道超深孔刻蚀(深宽比至少大于30:1),沉淀高质量的多晶硅薄膜和沟道深孔填充并形成栅衬垫阵列(Gate Pad),然后进行一系列的光刻、刻蚀、离子注入、沉积栅介质层、沉积栅极等工艺,最后进行BEOL工艺。 ![]() 在DRAM中,槽式/堆叠存储单元(Cell capacitor)向高深宽比发展,提高沉积难度。当前DRAM每个存储单元为1T1C(1 Transistor+1 Capacitor)结构,即由1个晶体管和1个电容构成,按照电容在晶体管之前和之后形成(即电容分别位于晶体管的下方和上方)可分为堆叠式电容(Stacked Capacitor)和沟槽式电容(Trench Capacitor)。1)沟槽式DRAM:先在基板上刻蚀出沟槽,然后在沟槽中沉积出介电层以形成电容器,然后在电容器上方制造出栅极,构成完整的DRAM cell。由于沟槽式DRAM不会影响CMOS晶体管特性,因此适合将DRAM和逻辑电路集成在一起,形成eDRAM。在沉积工艺时,由于沟槽的开口越来越细,要在沟槽里面沉积足够的介电材料,形成容值足够高的电容也更难;2)堆叠式DRAM:存储单元在前段工艺(FEOL)之后形成,主要用于制造独立式的高密度DRAM。电容结构逐渐从圆柱形变为柱形,需要对高深宽比进行构图,同样提高了沉积难度。 ![]() ![]()
|