对最近的见解和成就的看法 NAND-Flash 层堆栈的 z-shrink 涉及挤压用于创建字线层的材料,包括字线金属。目前,商用 3D-NAND 产品中的垂直字线间距介于 50 到 60 纳米之间,钨 (W) 是首选的字线金属。它还充当 NAND 闪存单元的栅电极,并通过替代金属栅极工艺集成在堆栈中。减小字线金属厚度会带来不必要的电阻率增加,这会增加电阻-电容 (RC) 延迟并减慢存取时间。 因此,Imec 正在寻找替代金属例如Ru和(barrierless)Mo,在小尺寸下可能具有较低的电阻率。在 2021 年 IEEE VLSI 技术和电路研讨会 (VLSI 2021) 上,该团队展示了将 Ru 和 Mo 字线的电阻率和存储特性提高到创纪录的40nm 字线间距。 ![]()
图 4:集成在 5 层 3D-NAND 中的 Mo 的 TEM 横截面,字线按比例缩小至 40nm 间距。 该团队还在探索电荷陷阱层、隧道电介质和金属栅叠层的替代材料,并正在研究它们对存储器性能的影响。例如,他们研究了高功函数金属与薄的高 k 衬垫相结合如何改善 3D-NAND 擦除操作。 在当今的 GAA 3D-NAND-Flash 结构中,通道材料使用的是多晶硅。将多晶硅材料沉积在贯穿材料叠层的“plug”中被认为是制造器件的最具成本效益的方法。但随着层数的增加,固有缺陷丰富的多晶硅通道会降低器件的读取电流。 因此,Imec 探索了通过引入替代通道材料或提高多晶硅通道质量来提高通道迁移率的方法。在 2021 年 IEEE 国际电子器件会议 (IEDM 2021) 上,该团队展示了在 3D 测试结构中使用金属诱导横向结晶 (MILC) 来提高多晶硅通道质量的结果。MILC 是一个过程,在该过程中,非晶硅在相对较低的温度下转变为晶态,由镍等金属的存在催化。 例如,建模工作的重点是了解电荷陷阱层闪存的非理想编程效率。这种低效率反映在增量步进脉冲编程 (ISPP) 曲线的斜率中,导致所需的编程电压更高。该团队最近对这种鲜为人知的现象有了更好的了解。 在 IEDM 2021 上,研究人员概述了对 ISPP 斜率的不同贡献,并提出了缓解方法,例如,通过在电荷陷阱层单元内使用高 k 电介质。 ![]()
图 5:载流子注入 (inj)、逃逸 (esc) 因素和陷阱填充对 ISPP 曲线和斜率(底部)的贡献 。 其他建模工作侧重于引入新材料和架构(例如沟槽单元)对层堆叠内的机械应力的影响。众所周知,机械应力会在 3D-NAND-Flash 结构中引入晶圆翘曲、局部图案变形和裂缝。在 2021 年 IEEE 国际互连技术会议 (IITC 2021) 上,imec 提出了一种有限元建模 (FEM) 方法,该方法可用于评估和减轻未来 3D-NAND 存储器制造中的晶圆翘曲,而无需通过实验构建 >100层堆栈。 如今,3D-NAND-Flash 技术用于高密度、低成本的数据密集型存储应用,例如固态驱动器。但该技术正越来越多地进入其他细分市场,尤其是低延迟存储领域。在这里,它可以潜在地服务于需要比传统 NAND 闪存更快的读取访问时间的一系列存储应用程序,例如数据库查找表等应用程序。这种更快的 NAND-Flash 变体将进入存储类内存 (SCM) 空间,这将有助于缩小快速、易失性 DRAM 和慢速、非易失性 3D-NAND-Flash 之间的差距。 与传统的高密度 3D-NAND-Flash 相比,低延迟存储应用需要更短的读取访问时间。有几条路线可以使这成为可能。一种方法是恢复为单位存储单元。这主要将程序速度(~30us)提高到接近读取速度(~10us)。设计空间的进一步优化可能涉及减少字线长度或改变 RC 延迟参数。通过这些措施和其他措施,NAND-Flash 技术有望以10μs 左右的读取访问时间进入低延迟存储市场。 低延迟存储:FeFET 的主要作用 从长远来看,铁电存储器有望发挥这一作用——尤其是基于3D 铁电场效应晶体管(3D-FeFET) 的存储器。预计 3D-FeFET 在速度方面将优于 3D-NAND-Flash,使其成为低延迟存储的理想选择。 ![]()
图 6:数据存储路线图上的 imec 视图。 eFET 的架构类似于传统的 n 沟道 MOS 晶体管,其中栅极电介质已被铁电材料(例如正交晶相的 HfO 2 )取代。铁电体可以处于两种电极化状态,这可以通过向晶体管栅极施加脉冲来提供的外部电场反转。去除场后,它们保持其极化状态,使材料具有非易失性特性。栅极绝缘体的两个稳定的剩余极化状态会改变晶体管的阈值电压。二进制状态因此被编码在晶体管的阈值电压中。FeFET的工作原理内存与 NAND-Flash 非常相似:通过向晶体管栅极施加脉冲来完成对存储单元的写入,通过测量漏极电流来执行读取。 就像 NAND-Flash 一样,FeFET 可以通过使用类似 3D-NAND 的制造流程以真正的 3D 方式制造 。为了构建3D-FeFET,类沟槽结构优于 GAA 结构,因为 FeFET 不会受益于圆形电荷载流子注入。 尽管仍处于研发的早期阶段,但与 3D-NAND 相比,3D-FeFET 有望呈现出一些显着的优势。它们更易于处理,消耗更少的功率,并且可以在更低的电压下运行,这有利于它们的可靠性。此外,几微秒级的读写访问时间是可行的,这使得它们成为未来低延迟应用的 3D-NAND 的有吸引力的替代品。 Imec 正在解决与 3D-FeFET 的加工、表征和可靠性相关的主要挑战。研究人员正在探索可能的最佳架构、材料组合和内存操作方案(例如编程/擦除方案),以优化低延迟存储应用的 3D-FeFET。要进入 SCM 空间(的 NAND 端),速度和循环耐久性(或失败前的编程/擦除循环数)是最关键的参数。虽然 3D-NAND 的循环寿命限制在 10 5左右,但该团队正在努力实现 3D-FeFET 的 107循环寿命。这已经可以在平面 FeFET 架构中得到证明。预计更高的循环耐久性会伴随着密度和保持力的轻微损失。 改善循环和速度的一种方法是优化通道材料。就像在 NAND 中一样,今天的 FeFET 通道是由多晶硅组成的。但这种材料对 FeFET 的操作提出了挑战。与铁电 HfO 2的结合会刺激界面氧化层的再生长,从而对电荷载流子产生不希望的俘获效应,并降低存储器的编程/擦除循环性能。除了研究缓解策略外,imec 还探索了替代通道材料,包括氧化物半导体。这些通道材料应具有低热预算以保持 HfO 2(或其他铁电层)的正交相。 ![]()
图 7:应用 100ns 编程/擦除脉冲后的存储器窗口;(底部)在编程和擦除之后随着循环的阈值电压 VT 的演变。 HfO 2的斜方晶相可以通过使用掺杂剂、应变和退火的最佳组合来稳定。今天,主要使用 Si 作为掺杂原子,因为即使在更高的热预算下它也可以保持正交相。imec 团队还研究替代掺杂剂和掺杂条件,并探索除 HfO 2之外的其他铁电材料。 对于架构,imec 积极追求3D 沟槽架构,已经展示了第一个测试设备。 总结 虽然几十年来NAND-Flash主要针对高密度存储应用,但我们现在也看到了该技术的更快变体——针对低延迟存储。对于后一种应用,imec 认为3D-FeFET在未来将发挥重要作用。对于 NAND 和 FeFET,imec 探索新材料和单元架构,并研究它们对内存性能的影响。此外,该团队正在更深入地了解主要的可靠性下降机制。虽然 3D-NAND-Flash 的创新旨在延续高密度存储路线图,但 imec 为 3D-FeFET 为其未来在低延迟存储市场中的角色做好准备。
|